<u>Exercise 6.1 (Revised) - Chapter 7 - Cube & Cube Roots - Ncert Solutions class</u> <u>8 - Maths</u>

Updated On 11-02-2025 By Lithanya

Share this to Friend on WhatsApp

Chapter 6 - Cube & Cube Roots | NCERT Solutions for Class 8 Maths

Ex 6.1 Question 1.

Which of the following numbers are not perfect cubes:

- (i) 216
- (ii) 128
- (iii) 1000
- (iv) 100
- (v) 46656

Answer.

(i) 216

2	216
2	108
2	54
3	27
3	9
3	3
	1

Prime factors of $216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$

Here all factors are in groups of 3's (in triplets) Therefore, 216 is a perfect cube number.

(ii) 128

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Here one factor 2 does not appear in a 3's group.

Therefore, 128 is not a perfect cube.

(iii) 1000

2	1000
2	500
2	250
5	125
5	25
5	5
	1

Prime factors of 1000 = 2X2X2X5X5X5

Here all factors appear in 3's group.

Therefore, 1000 is a perfect cube.

(iv) 100

2	100
2	50
5	25
5	5
33 (3	1

Prime factors of 100 = 2 imes 2 imes 5 imes 5

Here all factors do not appear in 3's group. Therefore, 100 is not a perfect cube.

(v) 46656

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

Prime factors of $46656=2\times2\times2\times2\times2\times2\times3\times3\times3\times3\times3\times3$

Here all factors appear in 3 's group.

Therefore, 46656 is a perfect cube.

Ex 6.1 Question 2.

Find the smallest number by which each of the following numbers must be multiplied to obtain a perfect cube:

- (ii) 256
- (iii) 72
- (iv) 675
- (v) 100

Answer.

(i) 243

3	243
3	81
3	27
3	9
3	3
	1

Prime factors of 243 = 3 imes 3 imes 3 imes 3 imes 3

Here 3 does not appear in 3's group.

Therefore, 243 must be multiplied by 3 to make it a perfect cube.

(ii) 256

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

Prime factors of 256 = 2 imes 2

Here one factor 2 is required to make a 3 's group.

Therefore, 256 must be multiplied by 2 to make it a perfect cube.

(iii) 72

2	72
2	36
2	18
3	9
3	3
	1

Prime factors of $72=2\times2\times2\times3\times3$

Here 3 does not appear in 3's group.

Therefore, 72 must be multiplied by 3 to make it a perfect cube.

(iv) 675

3	675
3	225
3	75
5	25
5	5
Sal.	1

Prime factors of $675 = 3 \times 3 \times 3 \times 5 \times 5$

Here factor 5 does not appear in 3 's group.

Therefore 675 must be multiplied by 5 to make it a perfect cube.

(v) 100

2	100
2	50
5	25
5	5
i dist	1

Prime factors of $100 = 2 \times 2 \times 5 \times 5$

Here factor 2 and 5 both do not appear in 3's group.

Therefore 100 must be multiplied by $2\times 5=10$ to make it a perfect cube.

Ex 6.1 Question 3.

Find the smallest number by which each of the following numbers must be divided to obtain a perfect cube:

- (i) 81
- (ii) 128
- (iii) 135
- (iv) 192
- (v) 704

Answer.

(i) 81

3	81
3	27
3	9
3	3
	1

Prime factors of 81 = 3 imes 3 imes 3 imes 3

Here one factor 3 is not grouped in triplets.

Therefore 81 must be divided by 3 to make it a perfect cube.

(ii) 128

2	128
2	64
2	32
2	16
2	8
2	4
2	2
69 49	1

Prime factors of $128 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Here one factor 2 does not appear in a 3's group. Therefore, 128 must be divided by 2 to make it a perfect cube. (iii) 135

3	135
3	45
3	15
5	5
	1


Prime factors of $135 = 3 \times 3 \times 3 \times 5$

Here one factor 5 does not appear in a triplet.

Therefore, 135 must be divided by 5 to make it a perfect cube.

(iv) 192

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

Prime factors of 192 = 2X2X2X2X2X2X3

Here one factor 3 does not appear in a triplet.

Therefore, 192 must be divided by 3 to make it a perfect cube.

(v) 704

2	704
2	352
2	176
2	88
2	44
2	22
11	11
arat tar	1

Prime factors of 704 = 2X2X2X2X2X2X11

Here one factor 11 does not appear in a triplet.

Therefore, 704 must be divided by 11 to make it a perfect cube.

Ex 6.1 Question 4.

Parikshit makes a cuboid of plasticine of sides $5~\mathrm{cm}, 2~\mathrm{cm}, 5~\mathrm{cm}$. How many such cuboids will he need to form a cube?

Answer.

Given numbers =5 imes2 imes5

Since, Factors of 5 and 2 both are not in group of three.

Therefore, the number must be multiplied by 2 imes 5 imes 2 = 20 to make it a perfect cube. Hence he needs 20 cuboids.

<u>Exercise 6.2 (Revised) - Chapter 7 - Cube & Cube Roots - Ncert Solutions class</u> <u>8 - Maths</u>

Updated On 11-02-2025 By Lithanya

Share this to Friend on WhatsApp

Chapter 6 - Cube & Cube Roots | NCERT Solutions for Class 8 Maths

Ex 6.2 Question 1.

Find the cube root of each of the following numbers by prime factorization method:

- (i) 64
- (ii) 512
- (iii) 10648
- (iv) 27000
- (v) 15625
- (vi) 13824
- (vii) 110592
- (viii) 46656
- (ix) 175616
- (x) 91125

Answer.

(i) 64

2	64
2	32
2	16
2	8
2	4
2	2
	1

$$\sqrt[3]{64} = \sqrt[3]{2 \times 2 \times 2 \times 2 \times 2 \times 2}$$

$$\sqrt[3]{64} = 2 \times 2 = 4$$

(ii) 512

2	512
2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

 $\sqrt[3]{512} = \sqrt[3]{2 \times 2 \times 2}$ $= 2 \times 2 \times 2 = 8$

(iii) 10648

2	10648
2	5324
2	2662
11	1331
11	121
11	11
	1

 $\sqrt[3]{10648} = \sqrt[3]{2 \times 2 \times 2 \times 11 \times 11 \times 11}$

=2 imes11=22

(iv) 27000

2	27000
2	13500
2	6750
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

 $\sqrt[3]{27000} = \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5}$

=2 imes3 imes5=30

(v) 15625

5	15625
5	3125
5	625
5	125
5	25
5	5
5 - 11.19 9	1

 $\sqrt[3]{15625} = \sqrt[3]{5 \times 5 \times 5 \times 5 \times 5 \times 5}$

=5 imes5=25

(vi) 13824

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

 $=2\times2\times2\times3=24$

(vii) 110592

2	110592
2	55296
2	27648
2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
108 - 12 105 - 12	1

 $=2\times2\times2\times2\times3=48$

(viii) 46656

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

 $\sqrt[3]{46656} = \sqrt[3]{2 imes 2 imes 3 imes 3 imes 3 imes 3 imes 3 imes 3$

 $=2\times2\times3\times3=36$

(ix) 175616

2	175616
2	87808
2	43904
2	21952
2	10976
2	5488
2	2744
2	1372
2	686
7	343
7	49
7	7
	1

(x) 91125

3	91125
3	30375
3	10125
3	3375
3	1125
3	375
5	125
5	25
5	5
	1

Ex 6.2 Question 2.

State true or false:

- (i) Cube of any odd number is even.
- (ii) A perfect cube does not end with two zeroes.
- (iii) If square of a number ends with 5, then its cube ends with 25.
- (iv) There is no perfect cube which ends with 8.
- (v) The cube of a two digit number may be a three digit number.
- (vi) The cube of a two digit number may have seven or more digits.
- (vii) The cube of a single digit number may be a single digit number.

Answer.

(i) False

Since,
$$1^3 = 1, 3^3 = 27, 5^3 = 125, \ldots$$
 are all odd.

(ii) True

Since, a perfect cube ends with three zeroes.

e.g.
$$10^3 = 1000, 20^3 = 8000, 30^3 = 27000, \dots$$
 so on

(iii) False

Since,
$$5^2 = 25$$
, $5^3 = 125$, $15^2 = 225$, $15^3 = 3375$

(Did not end with 25)

(iv) False

Since $12^3=1728$

[Ends with 8]

And
$$22^3=10648$$

[Ends with 8]

(v) False Since $10^3=1000$

[Four digit number]

And
$$11^3=1331$$

[Four digit number]

(vi) False Since $99^3=970299$

[Six digit number]

(vii) True

$$1^{3} = 1$$

[Single digit number]

$$2^{3} = 8$$

[Single digit number]

